

International Development Research Centre Centre de recherches pour le développement international

Cost-Benefit Analysis *for* R. Mayur, Khulna

Purnamita Dasgupta

Ford Foundation Chair in Environmental Economics Institute of Economic Growth, Delhi, India purnamita.dasgupta@gmail.com; pdg@iegindia.org 18 June 2013

Overview

- R. Mayur's (potential) to alleviate water stress in a long term sustainable manner
- Consequence of loss in ecosystem services from river: climatic, demographic causes (development)
- Economic analysis : CBA for net worth of natural capital asset
- Socio-economic & Quantitative analysis; decision making on allocation for funds in resource scarce situations

Why? Where?

- •Pre 1982: relatively higher tidal activity and less polluted; later embankment to prevent saline water intrusion
- •Current scenario:

Solid waste dumps, effluent discharge (drains), stagnant flow stretches; restricted tidal flows downstream; increasing salinity

- Activities: bathing along river banks; agriculture upstream (small canals upstream); limited fishing; boatmen downstream; restricted domestic use during monsoons.
- Minimum provisioning, regulating or cultural services; possibly some supporting services and biodiversity

From here to where...

- The future: Freshwater / tidal water ?
- Developmental perspective: sustainable source of fresh water
- Gainers : Urban and peri-urban residents
- Losers: Boatmen, fishermen, encroachers
- Source: rainwater; hydrological flows from surrounding aquifers

Water : stress and future security

•Climatic effects: increase in sea level, increasing salinity, storm surges and flooding from extreme events.

- •Socio-ecological costs: groundwater extraction;
- •Socio-economic: costlier alternatives; conflicts
- "Avoided damages" : agricultural productivity, flood regulation, access to freshwater (drinking)
- •Can it be a "no-regrets" option?

Theoretical framework

- •Ecosystem services : Provisioning, regulating, cultural, supporting
- Gainers and losers from proposed intervention
- Economic valuation: a mix of appropriate methods, a careful selection of what values to monetise
- Perspective of use-and non-use values; market and non market; direct and in-direct

Mapping Economic Values for River Mayur

Direct Use Values	Indirect and Non Use Values
Consumptive	Indirect
Water for residential purposes e.g. Drinking	Flood control
water	
Water for industrial and commercial purposes	Biodiversity (e.g. visitation by birds)
Fish production	Reduced erosion of river banks
Non-Consumptive	Climate regulation
Land and property values	Nutrient and Water cycling
Recreation	Non use
Tourism	Option values – biodiversity, future use (e.g.
	watershed services)
Educational, cultural and aesthetic values	Existence value
Health benefits	Bequest value

Cost-Benefit Analysis

• Approaches for valuation of changes in ecosystem services include:

Cost-benefit analysis, risk assessment, multicriteria analysis, cost effectiveness analysis, precautionary principle and vulnerability analysis

- Origin in welfare economics; principle of greatest benefit for greatest numbers (utilitarianism)
- Problem set-up: net benefits from river clean-up versus no-action

Cost-Benefit Analysis

- Making decisions by weighing gains and losses : net gain
- benefit that which increases well being
- cost that which reduces well being

Social Cost Benefit Rule ~ $\sum [B - C] > 0$

- Discount costs and benefits since these accrue over a period of time; at different points in time maybe
- Various decision criteria used to judge alternatives⁹

- Present value (PV) of costs/ benefits -
- PV (B) = $\sum [B_t / (1 + r)^t]$
- **PV** (**C**) = $\sum [C_t / (1 + r)^t]$

Comparing Benefits and Costs to reach decisions: Principle that benefits must outweigh costs for a feasible project / policy

3 tests: benefit-cost ratio (B-C); net present value (NPV); internal rate of return (IRR)

- NPV : If PV of benefits exceeds PV of costs, the option is a feasible one or PV (B) PV (C) >0
 - $= \left(\sum \left[B_t / (1+r)^t \right] \sum \left[C_t / (1+r)^t \right] \right) > 0$
- Apply the Internal rate of return (IRR): Refers to the rate of interest "r" that yields NPV = 0. Indicator of the Rate of return on investment funds used in the project
 - If IRR > market rate of interest accept the project
 - If IRR < market rate of interest reject the project</p>
- Benefit-cost ratio: benefits per dollar of costs incurred
 - If B/C > 1 accept the project

Data & Method

- Household interviews : upstream and downstream locations drudgery / time costs, use of river water, *encroachment issues*
- Focus group discussion: farmers, boatmen, fisherman, soil cutters
- Expert consultation: academia, officials of government agencies, land developers
- Secondary data sources:
 - Benefit / Avoided cost estimates : non-market values (estimates and inference); biophysical aspects of the river; extent of settlements along the river; demand for water; demographic details, floods.
 - Costs: Solid waste Management, dredging, waste water treatment, R & R for displaced; demolition of structures

Health:73.13	Secondary Data / Cost of illness :
Water for urban and peri-urban use	Replacement Cost / Cost savings
:4.407 mln*	
Fish production: 1.84mln	Benefit Transfer
Housing and Land Values: 99mln	Secondary Data / Key informant
	interviews
Recreation and Tourism: 4.95 mln	Survey / Adjusted Benefit transfer
Flood Control: 731.95 mln	Avoided Damages
Non-market benefits : 237 mln	Secondary data - inference
Reduced Drudgery from water	Cost savings / Survey data
collection: 26 mln**	
Reduced water stress from climate	Escalation factor – 5%
change & other future benefits	

Implications

Benefit – Cost ratio positive, NPV (@ 10.11% for 10 years) demonstrates feasibility

Cost-Benefit Estimates

Total benefits (10 years)	12990.54 mln Tk
Net benefits	7456.54 mln Tk
Benefit Cost Ratio	2.13
NPV	61.81 mln Tk

Implications

• Fresh water ecosystem a feasible option

Specifically:

- Drinking water : residents
- Reduced salinity: farmers (closing of sluice gates)
- Amenity: land developers, city corporation, residents and visitors
- Health : humans, livestock , *soil*
- Co-benefits: interventions for SWM and sewerage systems
- Institutional: legal, political economy

Implications or Complications?!

- "social welfare" : what is it determined by?
 - unweighted sum of individual welfare;
 - atleast one benefits; no one loses
 - Gainers compensate losers and are still better off
 - Welfare levels differ across people; therefore distributional weights on consequences
 - Multicriteria

Known that **equity matters** (aversion to risk, inequality)

- buildi n R and R even if technically "illegal"
- build in benefit escalation for environmental projects
- Relatively do-able in our case; two relatively small communities versus large gains to large numbers
- Reduced drudgery costs: gender and capabilities in the sustainable development discussion

Implications

There is no eligibility or distribution criteria that can be justified on scientific grounds only. The choice is a political choice, with significant distributional consequences. (Fussel 2009).