The SaciWATERs-CapNet Network (SCaN) is a platform for partnership towards capacity building in Integrated Water Resources Management (IWRM) across the South Asia region. SCaN has started enhancing its reach to many more individuals and institutions active in the water sector.

The current membership of SCaN stands at 133. The progress of SCaN’s membership in the past one year has been remarkable. Members belong to different countries of South Asia like India, Nepal, Sri Lanka, Bhutan, Pakistan and Bangladesh. Some eminent individuals from countries like Germany, UK, US, Canada, Indonesia and Oman are also members of this network (Fig.1 & Table.1 in Annexure-I).

The members come from diverse backgrounds, ranging from academics and research to members, who are a part of government, independent volunteers (Fig. 2 Table 2 in Annexure-I). Decision makers, people who influence the decision making process and people who are affected by those decisions are all part of this network. The cross cultural membership is in tune with the growing awareness at the global level to have a multidisciplinary approach to water studies.

Fig. 1 Cross national membership of SCaN

Fig. 2 & Table 2 in Annexure-I: The graph throws light on the broad background of the members of the network
The range of interests and expertise of members is an eclectic mix that is inclusive of Agriculture, Aquatic Ecology, Climate, Climate Change, Coastal Management, Disaster Management, Drought Management, Finance, Education, Environment, Flood Management, Gender, GIS, Governance, Groundwater, Hydrology, Irrigation, Modeling, Planning, Remote Sensing, River basin Management, Sanitation, Social mobilization, Waste Water Management, Water Resources Management, Law, Institutions, Water Quality, Water Supply (Fig.3 & Table.3 in Annexure-I).

Each member has given three and more areas of expertise out of these disciplines. The figures below give a clear picture as to the number of experts in each discipline.

![SCaN Members](image)

Fig.3: SCaN members’ areas of expertise

An analysis of the database also reveals that as of now 35, meaning about 26% of the members are women (Fig.4). The main reason behind the skewed data could be lesser number of women water professionals working in the water sector. There is a need to take conscious efforts to promote more and more women professionals to join the network. This could be part of SCaN’s outreach and promotional activities.

![Gender-disaggregated Membership Data](image)

Fig.4: Gender-disaggregated membership data
Table 1

<table>
<thead>
<tr>
<th>Country</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>57</td>
</tr>
<tr>
<td>Nepal</td>
<td>10</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>9</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>8</td>
</tr>
<tr>
<td>Pakistan</td>
<td>5</td>
</tr>
<tr>
<td>Germany</td>
<td>3</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
</tr>
<tr>
<td>UK</td>
<td>1</td>
</tr>
<tr>
<td>USA</td>
<td>1</td>
</tr>
<tr>
<td>Oman</td>
<td>1</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
</tr>
<tr>
<td>Australia</td>
<td>1</td>
</tr>
<tr>
<td>Bhutan</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Professional Background</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academics</td>
<td>39</td>
</tr>
<tr>
<td>Research</td>
<td>23</td>
</tr>
<tr>
<td>NGO</td>
<td>13</td>
</tr>
<tr>
<td>Govt</td>
<td>9</td>
</tr>
<tr>
<td>Commercial</td>
<td>2</td>
</tr>
<tr>
<td>Media</td>
<td>2</td>
</tr>
<tr>
<td>Volunteer</td>
<td>2</td>
</tr>
<tr>
<td>Independent & Freelance</td>
<td>1</td>
</tr>
<tr>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Area of Expertise</th>
<th>Number of SCaN Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>19</td>
</tr>
<tr>
<td>Aquatic Ecology</td>
<td>5</td>
</tr>
<tr>
<td>Climate</td>
<td>25</td>
</tr>
<tr>
<td>Conflict Resolution</td>
<td>4</td>
</tr>
<tr>
<td>Coastal Management</td>
<td>3</td>
</tr>
<tr>
<td>Disaster Management</td>
<td>16</td>
</tr>
<tr>
<td>Drought Management</td>
<td>6</td>
</tr>
<tr>
<td>Finance/Economics</td>
<td>6</td>
</tr>
<tr>
<td>Education/Training</td>
<td>18</td>
</tr>
<tr>
<td>Environment</td>
<td>45</td>
</tr>
<tr>
<td>Flood Management</td>
<td>4</td>
</tr>
<tr>
<td>Gender</td>
<td>17</td>
</tr>
<tr>
<td>GIS</td>
<td>16</td>
</tr>
<tr>
<td>Governance</td>
<td>21</td>
</tr>
<tr>
<td>Groundwater</td>
<td>14</td>
</tr>
<tr>
<td>Hydrology</td>
<td>15</td>
</tr>
<tr>
<td>Irrigation & Drainage</td>
<td>15</td>
</tr>
<tr>
<td>Modeling</td>
<td>5</td>
</tr>
<tr>
<td>Planning</td>
<td>3</td>
</tr>
<tr>
<td>Public Health</td>
<td>8</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>7</td>
</tr>
<tr>
<td>River Basin Management</td>
<td>10</td>
</tr>
<tr>
<td>Sanitation</td>
<td>13</td>
</tr>
<tr>
<td>Social Mobilization</td>
<td>10</td>
</tr>
<tr>
<td>Waste Water Management</td>
<td>8</td>
</tr>
<tr>
<td>Water Resources Management</td>
<td>55</td>
</tr>
<tr>
<td>Law</td>
<td>3</td>
</tr>
<tr>
<td>Institutions</td>
<td>10</td>
</tr>
<tr>
<td>Water Quality</td>
<td>7</td>
</tr>
<tr>
<td>Water Supply</td>
<td>14</td>
</tr>
</tbody>
</table>

Analysis by: Jayati Choureya and Pooja Anand